Abstract

Gonadotropins stimulate gonadal cell steroid secretion primarily through activation of a cAMP-protein kinase A signal transduction pathway. Various growth factors have been shown to inhibit gonadotropin-stimulated steroidogenesis, however, the intracellular signaling cascades involved in growth factor inhibition have not been characterized. The present study investigated whether Src tyrosine kinase, a nonreceptor tyrosine kinase activated in response to growth factor stimulation and previously shown to inhibit LH-stimulated progesterone secretion, acts via activation of Ras stimulated pathways, phosphatidylinositol-3-kinase (PI3-kinase) stimulated pathways, or both in MA10 Leydig cells. Direct activation of Src in MA10 cells that express a temperature sensitive Src was associated with an increase in GTP-bound Ras, indicating increased Ras activity in response to Src activation. Direct activation of Ras by way of expression of a constitutively active Ras (Ras+) was associated with a decrease in LH responsiveness. Coexpression of a dominant negative Src, which by itself increases LH responsiveness in MA10 cells, had no effect on Ras+ inhibition on LH responsiveness, further demonstrating that Src is upstream of Ras. In addition, MA10(Ras+) cells were relatively unresponsive to cholera toxin or 8-bromo cAMP, indicating the effects of Ras are independent of cAMP generation. Wortmannin, a PI3-kinase inhibitor, did not restore LH responsiveness to cells expressing activated Src or constitutively active Ras. These results demonstrate that Src activates a Ras pathway in MA10 Leydig cells, and that activation of Ras is associated with a loss of LH responsiveness that is independent of PI3-kinase.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call