Abstract

Cancer stem cells (CSCs) are responsible for tumor initiation, metastasis and recurrence. Caveolin-1 (Cav-1) is a major protein of caveolae, which participates in various cellular functions, such as vesicle trafficking, cholesterol homeostasis, tumor progression, etc. In the present study, we investigated a role for Cav-1 in regulating the stemness of human breast cancer (MDA-MB-231) cells. Cav-1 expression was significantly lower in tumorspheres than in adherent cells. The silencing of Cav-1 enhanced stemness of MDA-MB-231 cells. Mechanistically, Cav-1 silencing was accompanied by enhanced expression of Bmi-1, which is a representative self-renewal regulator, and promoted epithelial-mesenchymal transition. In a CSC-like state, reduced Cav-1 depends on its destabilization through ubiquitin-proteasome degradation. We further found that Src-mediated phosphorylation of Cav-1 at the Tyr 14 residue is essential for its degradation. Taken together, these findings suggest that Cav-1 destabilization by Src may play a pivotal role in manifestation and maintenance of stemness in breast cancer cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call