Abstract

Low-power (non-thermal) infrared (IR) radiation with the wavelength of 10.6 μm activates the Na,K-ATPase transducer function in sensory neurons, which is manifested in decrease of NaV1.8 channel voltage sensitivity at the cellular membrane level and in inhibition of growth of chick embryo dorsal root ganglia neurites at the tissue level. It is shown that the effect of low-power IR radiation is totally blocked by a specific Src kinase inhibitor, PP2. Upon irradiation on the background of PP2, the effective charge of NaV1.8 channel activation gating system does not differ from its control value in patch-clamp experiments, and the area index of sensory ganglia neurites growth remains unchanged as compared with the control in organotypic tissue culture. The data obtained demonstrate that Src kinase is involved in intracellular signaling pathways triggered by CO2 laser low-power IR radiation by the transducer-activated mechanism. This is the first indication that in primary sensory neuron the signals of low-power IR radiation are sensed, amplified, and transduced by the Na,K-ATPase/Src complex and not by G proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.