Abstract

In the ternary systems Ca-Al-Ge and Sr-Al-Ge three germanides with new structure types have been synthesized from stoichiometric ratios of the elements. Their crystal structures were determined using single crystal X-ray data. In the structure of Sr3Al2Ge4 (monoclinic, space group C2/m, a = 1267.6(4), b = 416.2(2), c = 887.4(3) pm, β = 110.37(2)°, Z = 2, R1 = 0.0354) Al-Ge sheets with Al in tetrahedral (i. e. Al−) and Ge in threefold ψ-tetrahedral (i. e. Ge−) coordination against Ge are present. Thus, the compound can be classified as an electron precise Zintl phase. This finding is verified by the result of a band structure calculation (within the FP-LAPW approach), that shows a distinct minimum of the total density of states at the Fermi level. The structure of Ca10Al6Ge9 (trigonal, space group R3̅m, a = 1398.45(14), c = 2107.4(3) pm, Z = 6, R1 = 0.0613) contains complicated sheets of trigonal planar building units [AlGe3] and [AlGe4] tetrahedra. The compound Ca20[Al3Ge6]2[Ge] (hexagonal, space group P63/m, a = 1600.9(2), c = 458.48(7) pm, Z = 1, R1 = 0.0282) shows two planar trimers of [AlGe3] triangles of formula [Al3Ge6] besides isolated Ge atoms (i. e. Ge4−). The overall electron count of the latter compounds, that contain trigonal planar coordinated Al atoms and considerable multiple bond character of the Al-Ge bonds, shows a very small deviation from the Zintl concept, comparable to the one observed in other aluminium-germanides like SrAlGe.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call