Abstract

Electrophoretic and spectroscopic studies were made with the telomere-related sequences d(G4T2G4T2G4T2G4) (T2) and d(G4T4G4T4G4T4G4) (T4) in the presence of Na+, K+, and Sr2+. Electrophoretic evidence indicates that these two oligomers exist in multiconformational states in solutions. A band identified as that of intermolecular (tetramolecular) G-quadruplex is apparent in both T2 and T4, whereas a band identified as intramolecular (monomeric) G-quartet is only evident in T4. The remaining electrophoretic bands that exhibit mobilities intermediate of these two extremes are identified as those of hairpin-related duplexes and tetraplexes. In the presence of millimolar concentrations of Sr2+ and subsequent thermal treatment, the intensity corresponding to the band attributable to the intermolecular G-quadruplex is dramatically enhanced in T2 while those of the hairpin-related bands of intermediate mobility are greatly reduced. Similar but less dramatic enhancement of the intermolecular quadruplex band is also observed in T4. Although these effects can also be induced by K+, orders of magnitude higher concentrations are needed. The intensity of the intramolecular G-quartet band, apparent in T4 but not in T2, appears to be relatively insensitive to the type of cation present in the solution. These results demonstrate that both Sr2+ and K+ facilitate the intermolecular G-tetraplex formation, with the divalent cation being much more effective. Comparison with the corresponding CD spectral characteristics suggests that the electrophoretic intensity enhancement of the intermolecular G-quadruplex band is correlated to the intensity enhancement of of the positive CD maximum at 265 nm.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.