Abstract

In this study, the physical properties of the Sr1−xPrxCo0.95Sn0.05O3−δ ceramics were measured and their potential for use as a cathode material of intermediate-temperature solid oxide fuel cells (IT-SOFCs) was evaluated. A cubic phase was retained in all of the Sr1−xPrxCo0.95Sn0.05O3−δ ceramics. Analysis of the temperature-dependent conductivity found the SrCo0.95Sn0.05O3−δ and Sr0.9Pr0.1Co0.95Sn0.05O3−δ ceramics exhibiting semiconductor-like behavior below 550 °C and metal-like behavior above the same temperature. The Sr0.8Pr0.2Co0.95Sn0.05O3−δ and Sr0.7Pr0.3Co0.95Sn0.05O3−δ ceramics, however, reported a metal-like conductivity in the whole temperature range. The electrical conductivities of the Sr0.8Pr0.2Co0.95Sn0.05O3−δ ceramic at 500 °C and 700 °C read respectively 1250 S/cm and 680 S/cm, both of which were superior than those in most of the common perovskites. Single cells with a structure of NiO–Sm0.2Ce0.8O2−δ (SDC)/SDC/Sr0.8Pr0.2Co0.95Sn0.05O3−δ-SDC were built and characterized. Addition of SDC in Sr0.8Pr0.2Co0.95Sn0.05O3−δ emerged to be a crucial factor reducing the ohmic resistance (R0) and polarization resistance (RP) of the cell by facilitating a better adhesion to and electrical contact with the electrolyte layer. The R0 and RP of the cell read respectively 0.068 Ω cm2 and 0.0571 Ω cm2 at 700 °C and 0.298 Ω cm2 and 1.310 Ω cm2 at 550 °C. With no microstructure optimization and hermetic sealing of the cells, maximum power density (MPD) and open circuit voltage (OCV) reached respectively 0.872 W/cm2 and 0.77 V at 700 °C and 0.482 W/cm2 and 0.86 V at 550 °C. It is evident that Sr1−xPrxCo0.95Sn0.05O3−δ is a promising cathode material for IT-SOFCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.