Abstract
We show that addition of SR proteins to in vitro splicing extracts results in a significant increase in assembly of the earliest prespliceosomal complex E and a corresponding decrease in assembly of the heterogeneous nuclear ribonucleoprotein (hnRNP) complex H. In addition, SR proteins promote formation of the E5' and E3' complexes that assemble on RNAs containing only 5' and 3' splice sites, respectively. We conclude that SR proteins promote the earliest specific recognition of both the 5' and 3' splice sites and are limiting for this function in HeLa nuclear extracts. Using UV cross-linking, we demonstrate specific, splice site-dependent RNA-protein interactions of SR proteins in the E, E5', and E3' complexes. SR proteins do not UV cross-link in the H complex, and conversely, hnRNP cross-linking is largely excluded from the E-type complexes. We also show that a discrete complex resembling the E5' complex assembles on both purine-rich and non-purine-rich exonic splicing enhancers. This complex, which we have designated the Enhancer complex, contains U1 small nuclear RNP (snRNP) and is associated with different SR protein family members, depending on the sequence of the enhancer. We propose that both downstream 5' splice site enhancers and exonic enhancers function by establishing a network of pre-mRNA-protein and protein-protein interactions involving U1 snRNP, SR proteins, and U2AF that is similar to the interactions that bring the 5' and 3' splice sites together in the E complex.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.