Abstract

Sr isotope data from soils, water, and atmospheric inputs in a small tropical granitoid watershed in the Luquillo Mountains of Puerto Rico constrain soil mineral development, weathering fluxes, and atmospheric deposition. This study provides new information on pedogenic processes and geochemical fluxes that is not apparent in watershed mass balances based on major elements alone. 87Sr/ 86Sr data reveal that Saharan mineral aerosol dust contributes significantly to atmospheric inputs. Watershed-scale Sr isotope mass balance calculations indicate that the dust deposition flux for the watershed is 2100 ± 700 mg cm −2 ka −1. Nd isotope analyses of soil and saprolite samples provide independent evidence for the presence of Saharan dust in the regolith. Watershed-scale Sr isotope mass balance calculations are used to calculate the overall short-term chemical denudation velocity for the watershed, which agrees well with previous denudation rate estimates based on major element chemistry and cosmogenic nuclides. The dissolved streamwater Sr flux is dominated by weathering of plagioclase and hornblende and partial weathering of biotite in the saprock zone. A steep gradient in regolith porewater 87Sr/ 86Sr ratio with depth, from 0.70635 to as high as 0.71395, reflects the transition from primary mineral-derived Sr to a combination of residual biotite-derived Sr and atmospherically-derived Sr near the surface, and allows multiple origins of kaolinite to be identified.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.