Abstract

BackgroundTo evaluate synchrotron radiation-based Fourier transform infrared microspectroscopy (SR-FTIR) as a tool for quantitative mapping of the content and distribution of the extracellular matrix in decellularized fibrocartilage bioscaffolds, and to provide a new platform for quantitatively characterizing bioscaffolds for tissue engineering.MethodsFibrocartilage was harvested and cut into book-shape bioscaffolds (N = 54), which were then decellularized. The structures and distribution of collagen fibrous and intrinsic ultrastructure in decellularized fibrocartilage bioscaffolds were evaluated by histological staining and scanning electron microscopy (SEM), respectively. The content of collagen and proteoglycan in the cellularized or decellularized bioscaffolds were also measured by SR-FTIR and biochemical assay.ResultsBook-shape fibrocartilage decellularized bioscaffolds were successfully obtained. Histological examination revealed that the structure of extracellular matrix endured during decellularization. Histology and DNA quantification analysis confirmed substantial removal of cells during decellularization. SEM demonstrated that intrinsic ultrastructure of the fibrocartilage bioscaffold was also well preserved. SR-FTIR quantitative analysis confirmed that decellularization had a significant effect on the content and distribution of collagen and proteoglycan in fibrocartilage bioscaffolds, these results are confirmed with the biochemical assay results.ConclusionSR-FTIR imaging can capture the histological morphology of decellularized bioscaffolds. Moreover, it can be used for quantitative mapping of the content and distribution of collagen in the bioscaffolds.

Highlights

  • To evaluate synchrotron radiation-based Fourier transform infrared microspectroscopy (SR-FTIR) as a tool for quantitative mapping of the content and distribution of the extracellular matrix in decellularized fibrocartilage bioscaffolds, and to provide a new platform for quantitatively characterizing bioscaffolds for tissue engineering

  • Bone-tendon interface injuries caused by sports, surgery and trauma are extremely common, and represent a huge burden on medical resources [1]

  • As the repair of bone-tendon interface injuries requires replication of the original graded transitional structure, decellularized bioscaffolds may prove useful in this application

Read more

Summary

Introduction

To evaluate synchrotron radiation-based Fourier transform infrared microspectroscopy (SR-FTIR) as a tool for quantitative mapping of the content and distribution of the extracellular matrix in decellularized fibrocartilage bioscaffolds, and to provide a new platform for quantitatively characterizing bioscaffolds for tissue engineering. The bone-tendon interface has a unique transitional structure with region-specific distributions in cell type and matrix composition [2]. This unique structure can anchor the bone and tendon together depending on the fibrous fibrocartilage zone, dispersing stress at the bone-tendon. As the repair of bone-tendon interface injuries requires replication of the original graded transitional structure, decellularized bioscaffolds may prove useful in this application. The traditional method of two-dimensional histological section staining is still used to evaluate the extracellular matrix of decellularized bioscaffolds. These traditional techniques can evaluate the distribution of extracellular matrix, but fail to quantitatively analyze the extracellular matrix components of the biological tissue

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.