Abstract

To evaluate influence of chemical weathering of the Qinghai-Tibet Plateau (QTP) on seawater 87Sr/86Sr variation, river water and sediment samples were collected, and their Sr concentrations and isotopic compositions analyzed, from the seven large rivers that originated from the QTP. By combining these with the data of the Ganges, Brahmaputra, Indus and Irrawaddy originated in the southern QTP, the total Sr flux of the eleven rivers reaches 3.47×109 mol·a−1, which accounts for 10.2% of the total Sr flux transported by the global rivers. The weighted mean 87Sr/86Sr is 0.71694, higher than the average value of the global rivers. The 87Srex (87Sr flux in excess of the seawater 87Sr/86Sr ratio) of the Chinese seven rivers is 1.55×106 mol·a−1, only accounting for about 6% of the value of the eleven rivers originated from QTP, and the Ganges-Brahmaputra system accounts for 86%. We assume that the QTP rivers have no strontium contributions to the oceans before ∼40 Ma and the Sr fluxes of the global rivers, except the QTP eleven rivers, are constant, then a maximum linear increase in Sr fluxes of the QTP rivers from zero to the modern value in response to tectonic uplift can explain ∼69% increase of seawater 87Sr/86Sr over the past ∼40 Ma and the remainder of 31% is perhaps provided from other factors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.