Abstract
In this paper, we consider the difference in the abstraction level of features extracted by different perceptual layers and use a weighted perceptual loss-based generative adversarial network to deblur the UAV images, which removes the blur and restores the texture details of the images well. The perceptual loss is used as an objective evaluation index for training process monitoring and model selection, which eliminates the need for extensive manual comparison of the deblurring effect and facilitates model selection. The UNet jump connection structure facilitates the transfer of features across layers in the network, reduces the learning difficulty of the generator, and improves the stability of adversarial training.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.