Abstract

The purpose of this study was to examine the activity and expression of sarcoplasmic reticulum (SR) Ca(2+)-ATPase in left ventricular (LV) myocardium of dogs with chronic heart failure (HF). LV and right ventricular (RV) tissue specimens were obtained from six normal (NL) control dogs and six dogs with chronic HF (LV ejection fraction, 23 +/- 2%) produced by multiple sequential intracoronary microembolizations. Thapsigargin-sensitive Ca(2+)-ATPase activity was measured in isolated SR membrane fractions prepared from LV and RV myocardium. Ca(2+)-ATPase expression, using a specific dog myocardium monoclonal antibody, was measured in sodium dodecyl sulfate (SDS) extract prepared from LV and RV myocardium. Ca(2+)-ATPase activity in both ventricles of NL or HF dogs increased with increasing Ca2+ concentration and reached a plateau at 3 microM Ca2+. The maximal velocity (Vmax, mumol Pi released.min-1.mg-1) of Ca(2+)-ATPase activity was significantly lower in LV of HF dogs compared with NL (0.15 +/- 0.01 vs. 0.23 +/- 0.01, P < 0.05), whereas the affinity of the Ca2+ pump for Ca2+ was unchanged. LV tissue levels of Ca(2+)-ATPase (densitometric units/5 micrograms noncollagen protein) were also significantly lower in LV myocardium of HF dogs compared with NL (3.52 +/- 0.43 vs. 5.53 +/- 0.47, P < 0.05). No significant differences in Ca(2+)-ATPase activity or expression were observed in RV myocardium of HF dogs compared with NL. We conclude that SR Ca(2+)-ATPase activity and protein levels are reduced in LV myocardium of dogs with chronic HF. This abnormality of the SR Ca2+ pump of the failed LV can result in impaired Ca2+ uptake and ultimately to Ca2+ overload and global LV dysfunction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call