Abstract
The ability to perform magnetic resonance imaging (MRI) in ultra-low magnetic fields (ULF) of ∼100μT, using superconducting quantum interference device (SQUID) detection, has enabled a new class of magnetoencephalography (MEG) instrumentation capable of recording both anatomical (via the ULF MRI) and functional (biomagnetic) information about the brain. The combined ULF MRI/MEG instrument allows both structural and functional information to be co-registered to a single coordinate system and acquired in a single device. In this paper we discuss the considerations and challenges required to develop a combined ULF MRI/MEG device, including pulse sequence development, magnetic field generation, SQUID operation in an environment of pulsed pre-polarization, and optimization of pick-up coil geometries for MRI in different noise environments. We also discuss the design of a “hybrid” ULF MRI/MEG system under development in our laboratory that uses SQUID pick-up coils separately optimized for MEG and ULF MRI.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.