Abstract

We study occupation of certain regions of phase space of an asymmetric superconducting quantum interference device (SQUID) driven by thermal noise, subjected to an external ac current and threaded by a constant magnetic flux. Thermally activated transitions between the states which reflect three deterministic attractors are analyzed in the regime of the noise induced dynamical localization of the Josephson phase velocity, i.e., there is a temperature interval in which the conditional probability of the voltage to remain in one of the states is very close to one. Implications of this phenomenon on the dc voltage drop across the SQUID are discussed. We detect the emergence of the power law tails in a residence time probability distribution of the Josephson phase velocity and discuss the role of symmetry breaking in dynamical localization induced by thermal noise. This phenomenon illustrates how deterministic-like behavior may be extracted from randomness by stochasticity itself. It reveals another face of noise.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.