Abstract

In antifouling applications for the marine industry, low surface energy coatings entail turbulent water flow to release marine biofouling, which presents a substantial challenge for antifouling in the static situation. The traditional solution is to add environmentally friendly antifouling agents, but it has the problem of exhaustion. Therefore, the low surface energy elastic antifouling coating without antifoulants has high research value. Herein, inspired by soft body and epidermal mucus of squid, the stable polyvinylpyrrolidone (PVP) hydrophilic segments were introduced to modify the polydimethylsiloxane-based polyurethane (PDMS-PU), realizing low surface energy elastomer coatings with hydrophilized defensive surface and reduced elastic modulus (<1.1 MPa). In an aqueous environment, the tailored surface exposed sufficient stable hydrophilic segments, exerting excellent antifouling performance, which improved the anti-adsorption effect on biological proteins, bacteria (antibacterial rate 95.24%) and algae (cover rate <3%). The coating exhibited excellent marine antifouling performance within 150 days and also gave a new impetus to developing an eco-friendly and sustainable solution for no-antifoulant marine antifouling applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call