Abstract

Nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) at ultra-low magnetic fields (ULF, fields of /spl sim//spl mu/T) have several advantages over their counterparts at higher magnetic fields. These include narrow line widths, the possibility of novel imaging schemes such as T/sub 1/ weighted images, and reduced system cost and complexity. In addition, ULF NMR/MRI with superconducting quantum interference devices (SQUIDs) is compatible with simultaneous measurements of biomagnetic signals, a capability conventional systems cannot offer. SQUID-based ULF MRI has already been demonstrated, as have measurements of simultaneous MEG and NMR at ULF. In this paper we will show simultaneous magnetocardiography (MCG) and magnetomyography (MMG) with NMR are also possible. Another compelling application of NMR/MRI at ULF is the possibility of directly measuring magnetic resonance consequences of neuronal signals. In this paper we explore simultaneous MMG/NMR and MCG/NMR for an effect on the NMR signal, in T/sub 2//sup */, that might be associated with the effects of bioelectric currents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.