Abstract

We investigate the generation of squeezed state of the mirror motion in a dissipative optomechanical system driven with a strong laser field accompanied with two periodically-modulated lights. Using the density operator approach we calculate the variances of quantum fluctuations around the classical orbits. Both the numerical and analytical results predict that the squeezed state of the mirror motion around its ground state is achievable. Moreover, the obtained squeezed state is robust against the thermal noise because of the strong cooling effect outside the resolved-sideband regime, which arises from the destructive interference of quantum noise.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.