Abstract

We describe a method to create and store scalable and long-lived entangled spin-squeezed states within a manifold of many-body cavity dark states using collective emission of light from multilevel atoms inside an optical cavity. We show that the system can be tuned to generate squeezing in a dark state where it will be immune to superradiance. We also show more generically that squeezing can be generated using a combination of superradiance and coherent driving in a bright state, and subsequently be transferred via single-particle rotations to a dark state where squeezing can be stored. Our findings, readily testable in current optical cavity experiments with alkaline-earth-like atoms, can open a path for dissipative generation and storage of metrologically useful states in optical transitions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.