Abstract
The squeezing spectrum of the fluorescence field emitted from a four-level atom in J = 1/2 to J = 1/2 configuration driven by two coherent fields is studied. We find that the squeezing properties of the fluorescence radiation are significantly influenced by the presence of vacuum-induced coherence in the atomic system. It is shown that such coherence induces spectral squeezing in phase quadratures of the fluorescence light for both weak and strong driving fields. The dependence of the squeezing spectrum on the relative phase of the driving fields is also investigated. Effects such as enhancement or suppression of the squeezing peaks are shown in the spectrum as the relative phase is varied. An analytical explanation of the numerical findings is presented using dressed-states of the atom-field system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Physics B: Atomic, Molecular and Optical Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.