Abstract
We address the security of continuous-variable quantum key distribution with squeezed states upon the realistic conditions of noisy and lossy environment and limited reconciliation efficiency. Considering the generalized preparation scheme and clearly distinguishing between classical and quantum resources, we investigate the effect of finite squeezing on the tolerance of the protocol to untrusted channel noise. For a long-distance strongly attenuating channel and the consequent low reconciliation efficiency, we show that feasible limited squeezing is surprisingly sufficient to provide the security of Gaussian quantum key distribution in the presence of untrusted noise. We explain the effect by the behaviour of the Holevo quantity, which describes the information leakage and is effectively minimized by the squeezed states.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: New Journal of Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.