Abstract

We propose a scheme in which broadband nanostructures allow for an enhanced two-photon nonlinearity that generates squeezed light from far-detuned quantum emitters via collective resonance fluorescence. To illustrate the proposal, we consider a pair of two-level emitters detuned by 400 line widths that are coupled by a plasmonic nanosphere. It is shown that the reduced fluctuations of the electromagnetic field arising from the interaction between the emitters provide a means to detect their entanglement. Due to the near-field enhancement in the proposed hybrid systems, these nonclassical effects can be encountered outside both the extremely close separations limiting the observation in free space and narrow frequency bands in high-Q cavities. Our approach permits overcoming the fundamental limitations to the generation of squeezed light from noninteracting single emitters and is more robust against phase decoherence induced by the environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.