Abstract

Two-dimensional (2D) metal oxides exhibit extraordinary mechanical and electronic properties, leading to new paradigms in the design of electronic and optical systems. However, as a representative, a 2D Ga2O3-based memristor has rarely been touched, which is hindered by challenges associated with large-scale material synthesis. In this work, the ultrathin 2D Ga2O3 layer (∼3 nm thick) formation on the liquid gallium (Ga) surface is transferred with lateral dimensions over several centimeters on a substrate via the squeeze-printing strategy. 2D Ga2O3-based memristors exhibit forming-free and bipolar switching behaviors, which also reveal essential functions of biological synapse, including paired-pulse facilitation, spiking timing-dependent plasticity, and long-term depression and potentiation. These results demonstrate the potential of 2D Ga2O3 material for neuromorphic computing and open up an avenue for future electronics application, such as deep UV photodetectors, multimode nanoresonators, and power switching devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call