Abstract

Newtonian liquids and non-Newtonian soft solids were squeezed between parallel glass plates by a constant force F applied at time t=0. The plate separation h(t) and the squeeze-rate % MathType!MTEF!2!1!+- % feaafaart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOvaiabg2 % da9iabgkHiTiqadIgagaGaaaaa!39AF! $$ V = - \dot h $$ were measured for different amplitudes of plate roughness in the range 0.3–31 μm. Newtonian liquids obeyed the relation V∝h 3 of Stephan (1874) for large plate separations. Departures from this relation that occurred when h approached the roughness amplitude were attributed to radial liquid permeation through the rough region. Most non-Newtonian materials showed boundary-slip that varied with roughness amplitude. Some showed slip that varied strongly during the squeezing process. Perfect slip (zero boundary shear stress) was not approached by any material, even when squeezed by optically-polished plates. If the plates had sufficient roughness amplitude (e.g. about 30 μm), boundary slip was practically absent, and the dependence of V on h was close to that predicted by no-slip theory of a Herschel-Bulkley fluid in squeeze flow (Covey and Stanmore 1981, Adams et al. 1994).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.