Abstract

An improved theoretical approach is proposed to predict the dynamic behavior of long, slender and flexible microcantilevers affected by squeeze-film damping at low ambient pressures. Our approach extends recent continuum gas damping models (Veijola 2004 J. Micromech. Microeng. 14 1109–18, Gallis and Torczynski 2004 J. Microelectromech. Syst. 13 653–9), which were originally derived for a rigid oscillating plate near a wall, to flexible microcantilevers for calculating and predicting squeeze-film damping ratios of higher order bending modes at reduced ambient pressures. Theoretical frequency response functions are derived for a flexible microcantilever beam excited both inertially and via external forcing. Experiments performed carefully at controlled gas pressures are used to validate our theoretical approach over five orders of the Knudsen number. In addition, we investigate the relative importance of theoretical assumptions made in the Reynolds-equation-based approach for flexible microelectromechanical systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.