Abstract

The compression tests under the unidirection for magnetorheological (MR) fluids have been studied at different compressive speeds. The results indicated that curves of compressive stress under different compression speeds at the applied magnetic field of 0.15 T overlapped well and were shown to be an exponent of about 1 of the initial gap distance in the elastic deformation region and accorded well with the description of continuous media theory. The difference in compressive stress curves increases significantly with an increasing magnetic field. At this time, the continuous media theory description could not be accounted for the effect of compressive speed on the compression of MR fluid, which seems to deviate from the Deborah number prediction under the lower compressive speeds. An explanation based on the two-phase flow due to aggregations of particle chains resulting in much longer relaxation times at a lower compressive speed was proposed to explain this deviation. The results have guiding significance for the theoretical design and process parameter optimization for the squeeze-assisted MR devices such as MR dampers and MR clutches based on the compressive resistance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call