Abstract

The dynamic compressive and static normal stresses of magnetic powders (MPs) with the constant volume squeezed between two parallel plates were experimentally studied. The compressive stress increased in a power law as the gap distance decreased, with an exponent range of −0.73 (0.04 T) to −2.63 (0.77 T). The values of the scale factor to normalize the compressive curves were mainly dominated by the applied magnetic field. The compressive behavior of the MPs showed a less significant velocity effect and initial gap distance effect than those of the magnetorheological (MR) and electrorheological (ER) fluids because of the absence of a host liquid. The compressive stress was generated by the serious particle aggregation, which was induced by a magnetic field and friction during compression. This study is designed to further the understanding of the behavior of smart ER/MR materials and the application of MP actuators in squeeze mode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.