Abstract

The application of Transformer in computer vision has had the most significant influence of all the deep learning developments over the past five years. In addition to the exceptional performance of convolutional neural networks (CNN) in hyperspectral image (HSI) classification, Transformer has begun to be applied to HSI classification. However, for the time being, Transformer has not produced satisfactory results in HSI classification. Recently, in the field of image classification, the creators of Sequencer have proposed a Sequencer structure that substitutes the Transformer self-attention layer with a BiLSTM2D layer and achieves satisfactory results. As a result, this paper proposes a unique network called SquconvNet, that combines CNN with Sequencer block to improve hyperspectral classification. In this paper, we conducted rigorous HSI classification experiments on three relevant baseline datasets to evaluate the performance of the proposed method. The experimental results show that our proposed method has clear advantages in terms of classification accuracy and stability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.