Abstract

Band selection is an effective approach to mitigate the “Hughes phenomenon” of hyperspectral image (HSI) classification. In this paper, a novel squaring weighted low-rank subspace clustering band selection (SWLRSC) algorithm is proposed for hyperspectral imagery. The SWLRSC method can effectively capture the global structure information of the HSI band set by constructing a strongly connected adjacency matrix with accurate representation coefficients, and can adaptively determine an appropriate size for the selected band subset. The experimental results indicate that the proposed SWLRSC algorithm outperforms the state-of-the-art band selection algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.