Abstract

Square-wave anodic-stripping voltammetry (SWASV) was set up and optimized for simultaneous determination of cadmium, lead, and copper in siliceous spicules of marine sponges, directly in the hydrofluoric acid solution (approximately 0.55 mol L(-1) HF, pH approximately 1.9). A thin mercury-film electrode (TMFE) plated on to an HF-resistant epoxy-impregnated graphite rotating-disc support was used. The optimum experimental conditions, evaluated also in terms of the signal-to-noise ratio, were as follows: deposition potential -1100 mV vs. Ag/AgCl, KCl 3 mol L(-1), deposition time 3-10 min, electrode rotation 3000 rpm, SW scan from -1100 mV to +100 mV, SW pulse amplitude 25 mV, frequency 100 Hz, DeltaE(step) 8 mV, t(step) 100 ms, t(wait) 60 ms, t(delay) 2 ms, t(meas) 3 ms. Under these conditions the metal peak potentials were Cd -654 +/- 1 mV, Pb -458 +/- 1 mV, Cu -198 +/- 1 mV. The electrochemical behaviour was reversible for Pb, quasi-reversible for Cd, and kinetically controlled (possibly following chemical reaction) for Cu. The linearity of the response with concentration was verified up to approximately 4 microg L(-1) for Cd and Pb and approximately 20 microg L(-1) for Cu. The detection limits were 5.8 ng L(-1), 3.6 ng L(-1), and 4.3 ng L(-1) for Cd, Pb, and Cu, respectively, with t(d) = 5 min. The method was applied for determination of the metals in spicules of two specimens of marine sponges (Demosponges) from the Portofino natural reserve (Ligurian Sea, Italy, Petrosia ficiformis) and Terra Nova Bay (Ross Sea, Antarctica, Sphaerotylus antarcticus). The metal contents varied from tens of ng g(-1) to approximately 1 microg g(-1), depending on the metal considered and with significant differences between the two sponge species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.