Abstract

AbstractBoundary value problems for singular canonical systems of differential equations of the form are studied in the associated Hilbert space \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$L^2_\Delta (\imath )$\end{document}. With the help of a monotonicity principle for matrix functions their square‐integrable solutions are specified. This yields a direct treatment of defect numbers of the minimal relation and simultaneously makes it possible to assign certain boundary values to the elements of the maximal relation induced by the system of differential equations in \documentclass{article}\usepackage{amssymb}\begin{document}\pagestyle{empty}$L^2_\Delta (\imath )$\end{document}. The investigation of boundary value problems for these systems and their spectral theory can be carried out by means of abstract boundary triplet techniques. This paper makes explicit the construction and the properties of boundary triplets and Weyl functions for singular canonical systems. Furthermore, the Weyl functions are shown to have a property similar to that of the classical Titchmarsh‐Weyl coefficients for singular Sturm‐Liouville operators: they single out the square‐integrable solutions of the homogeneous systems of canonical differential equations. © 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.