Abstract

In a family, parameterized by θ, of non-negative random variables with finite, positive second moment, Taylor's law (TL) asserts that the population variance is proportional to a power of the population mean as θ varies: σ2 (θ) = a[μ(θ)]b, a > 0. TL, sometimes called fluctuation scaling, holds widely in science, probability theory, and stochastic processes. Here we report diverse examples of TL with b = 2 (equivalent to a constant coefficient of variation) arising from a difference of random variables in normed vector spaces of dimension 1 and larger. In these examples, we compute a exactly using, in some cases, a simple, new technique. These examples may prove useful in future models that involve differences of random variables, including models of the spatial distribution and migration of human populations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.