Abstract

We present evidence of complete, three-dimensional photonic bandgaps in obliquely deposited thin films with a porous microstructure of tetragonally arranged square spirals. We further present a capability to engineer the bandgap center to wavelengths as low as 1.65 mum, with bandgap widths of up to 10.9%. Using new deposition methods that provide detailed control over the photonic crystal dimensions and morphology, this approach allows advanced photonic crystal architectures to be realized over large scales with uncomplicated fabrication technology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.