Abstract
We present new estimates for sums of the divisor function and other similar arithmetic functions in short intervals over function fields. (When the intervals are long, one obtains a good estimate from the Riemann hypothesis.) We obtain an estimate that approaches square-root cancellation as long as the characteristic of the finite field is relatively large. This is done by a geometric method, inspired by work of Hast and Matei, where we calculate the singular locus of a variety whose Fq-points control this sum. This has applications to highly unbalanced moments of L-functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.