Abstract
We give an algorithm for the enumeration of self-avoiding walks on the (anisotropic) square lattice. Application of the algorithm on a 1024 processor Intel Paragon supercomputer resulted in a 51 term series. For (isotropic) square lattice self-avoiding polygons, a related algorithm has produced a 90 term series. Careful analysis provides compelling evidence for simple rational values of the exponents in both the dominant and subdominant terms in the asymptotic form of the coefficients. We also advance compelling arguments – but not a proof – that the generating function for SAW is not differentiably finite. The corresponding result for SAP has recently been proved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.