Abstract
We study square integrable irreducible unitary representations (i.e. matrix coefficients are to be square integrable mod the center) of simply connected nilpotent Lie groups N, and determine which such groups have such representations. We show that if N has one such square integrable representation, then almost all (with respect to Plancherel measure) irreducible representations are square integrable. We present a simple direct formula for the formal degrees of such representations, and give also an explicit simple version of the Plancherel formula. Finally if $\Gamma$ is a discrete uniform subgroup of N we determine explicitly which square integrable representations of N occur in ${L_2}(N/\Gamma )$, and we calculate the multiplicities which turn out to be formal degrees, suitably normalized.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.