Abstract
Squalene synthetase (farnesyltransferase; farnesyl diphosphate:farnesyl-diphosphate farnesyltransferase, EC 2.5.1.21), the enzyme in the cholesterol biosynthetic pathway that converts farnesyl pyrophosphate into squalene, is subject to regulation in cultured human fibroblasts. When cholesterol-carrying low density lipoprotein (LDL) was removed from the serum of the culture medium, squalene synthetase activity increased 8-fold over 24 hr. When LDL was added back to the medium, squalene synthetase was slowly suppressed, 50% and 90% reduction occurring in 15 and 48 hr, respectively. Suppression of squalene synthetase required uptake of LDL via the LDL receptor; hence, it did not occur in mutant fibroblasts from a patient with homozygous familial hypercholesterolemia that lack receptors. The addition of a mixture of 25-hydroxycholesterol and cholesterol suppressed squalene synthetase equally well in normal and mutant fibroblasts. Coupled with previous data, the current findings indicate that cholesterol derived from LDL regulates at least two enzymes in the cholesterol synthetic pathway in fibroblasts: (i) its primary action is to rapidly suppress 3-hydroxy-3-methylglutaryl coenzyme A reductase [mevalonate:NADP(+), oxidoreductase (CoA-acylating), EC 1.1.1.34], which reduces mevalonate production by 95% within 8 hr, and (ii) its secondary action is to slowly suppress squalene synthetase. The LDL-mediated suppression of squalene synthetase does not regulate de novo cholesterol synthesis; it occurs after 3-hydroxy-3-methylglutaryl coenzyme A reductase is already suppressed. Rather, we hypothesize that it may function to allow the pool size of farnesyl pyrophosphate to be maintained in the presence of LDL so that low levels of mevalonate can be shunted preferentially into nonsterol products, such as ubiquinone-10 and dolichol. This mechanism may explain the earlier observation that the synthesis of ubiquinone-10 in fibroblasts proceeds at a normal rate in the presence of LDL despite a 95% decrease in mevalonate production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.