Abstract

Sugarcane is an important sugar crop and energy crop worldwide. Sugarcane smut caused by Sporisorium scitamineum is a serious fungal disease that occurs worldwide, seriously affecting the yield and quality of sugarcane. It is essential to reveal the molecular pathogenesis of S. scitamineum to explore a new control strategy of sugarcane smut. Based on transcriptome sequencing data of two S. scitamineum strains Ss16 and Ss47, each with a different pathogenicity, our laboratory screened out the SsCI80130 gene predicted to encode squalene monooxygenase. In this study, we obtained the knockout mutants (ΔSs80130+ and ΔSs80130−) and complementary mutants (COM80130+ and COM80130−) of this gene by the polyethylene glycol-mediated (PEG-mediated) protoplast transformation technology, and then performed a functional analysis of the gene. The results showed that the deletion of the SsCI80130 gene resulted in the increased content of squalene (substrate for squalene monooxygenase) and decreased content of ergosterol (the final product of the ergosterol synthesis pathway) in S. scitamineum. Meanwhile, the sporidial growth rate of the knockout mutants was significantly slower than that of the wild type and complementary mutants; under cell-wall stress or oxidative stress, the growth of the knockout mutants was significantly inhibited. In addition, the sexual mating ability and pathogenicity of knockout mutants were significantly weakened, while the sexual mating ability could be restored by adding exogenous small-molecular signal substance cAMP (cyclic adenosine monophosphate) or tryptophol. It is speculated that the SsCI80130 gene was involved in the ergosterol biosynthesis in S. scitamineum and played an important role in the sporidial growth, stress response to different abiotic stresses (including cell wall stress and oxidative stress), sexual mating/filamentation and pathogenicity. Moreover, the SsCI80130 gene may affect the sexual mating and pathogenicity of S. scitamineum by regulating the ergosterol synthesis and the synthesis of the small-molecular signal substance cAMP or tryptophol required for sexual mating. This study reveals for the first time that the gene encoding squalene monooxygenase is involved in regulating the sexual mating and pathogenicity of S. scitamineum, providing a basis for the molecular pathogenic mechanism of S. scitamineum.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call