Abstract

Ab initio and semiempirical electronic structure methods are usually implemented in separate software packages or use entirely different code paths. As a result, it can be time-consuming to transfer an established ab initio electronic structure scheme to a semiempirical Hamiltonian. We present an approach to unify ab initio and semiempirical electronic structure code paths based on a separation of the wavefunction ansatz and the needed matrix representations of operators. With this separation, the Hamiltonian can refer to either an ab initio or semiempirical treatment of the resulting integrals. We built a semiempirical integral library and interfaced it to the GPU-accelerated electronic structure code TeraChem. Equivalency between ab initio and semiempirical tight-binding Hamiltonian terms is assigned according to their dependence on the one-electron density matrix. The new library provides semiempirical equivalents of the Hamiltonian matrix and gradient intermediates, corresponding to those provided by the ab initio integral library. This enables the straightforward combination of semiempirical Hamiltonians with the full pre-existing ground and excited state functionality of the ab initio electronic structure code. We demonstrate the capability of this approach by combining the extended tight-binding method GFN1-xTB with both spin-restricted ensemble-referenced Kohn-Sham and complete active space methods. We also present a highly efficient GPU implementation of the semiempirical Mulliken-approximated Fock exchange. The additional computational cost for this term becomes negligible even on consumer-grade GPUs, enabling Mulliken-approximated exchange in tight-binding methods for essentially no additional cost.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call