Abstract
The effect of sputtering power (P=60 W–180 W) on the electrochromic properties of nickel oxide films deposited on ITO-coated glass substrates by the radio frequency magnetron sputtering technique was investigated. Crystalline structure and morphology were assessed by X-ray diffraction and scanning electron microscopy, respectively. The effect of sputtering power on electrochromism of the samples was evaluated with chronoamperometry, cyclic voltammetry, and electrochemical impedance spectroscopy. We used LiClO4 in a propylene carbonate solution for Li insertion/extraction. The chemical composition of the samples before and after Li intercalation was analyzed by X-ray photoelectron spectroscopy (XPS). We observed the cubic phase of NiO with sputtering power mainly affecting crystallinity and grain size. These in turn affect the electrochromic properties. Coloration efficiency reduces from 24.4 cm2/A⋅s to (15.4, 13.7, 16.1) cm2/A⋅s, and the reversibility from 40% to 30% as sputtering power increases from 60 W to 180 W. The impedance spectra indicates that ion diffusion is larger for the film grown at 60 W and then goes down for the films deposited at higher sputtering powers. XPS analysis reveals that higher values of P promote the formation of nickel hydroxides on the film surface. As a consequence of changes in crystallinity and morphology, the presence of nickel hydroxides increases showing that not only the electrochromic properties of the samples are affected by the sputtering power, but also their chemical composition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.