Abstract

Silicates are the dominant surface material of many Solar System objects, which are exposed to ion bombardment by solar wind ions and cosmic rays. Induced physico-chemical processes include sputtering which can contribute to the formation of an exosphere. We have measured sputtering yields and velocity spectra of secondary ions ejected from nepheline, an aluminosilicate thought to be a good analogue for Mercury's surface, as a laboratory approach to understand the evolution of silicate surfaces and the presence of Na and K vapor in the exosphere. Experiments were performed with highly charged ion beams (keV/u–MeV/u) delivered by GANIL using an imaging XY-TOF-SIMS device under UHV conditions. The fluence dependence of sputtering yields gives information about the evolution of surface stoichiometry during irradiation. From the energy distributions N(E) of sputtered particles, the fraction of particles which could escape from the gravitational field of Mercury, and of those falling back and possibly contributing to populate the exosphere can be roughly estimated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.