Abstract

Abstract Various types of silicon carbide coatings made by reactive ion-plating have been bombarded with a 3.0 keV H+3 ion beam at temperatures around 500°C. The sputtering yield in stoichiometric samples (i.e. Si : C = 1 : 1) at 500°C was 1.15 × 10 −2 atoms/H+. As the stoichiometry deviates from this point, the sputtering yield has larger values. The temperature dependence of the sputtering yield in stoichiometric samples was negligible below 600°C. No surface topography changes occurred in stoichiometric samples even at a high fluence of 2 × 10 20 H + /cm 2 , while severe erosion took place in non-stoichiometric samples. By Auger electron spectroscopy (AES), carbon exists on the surface in the form of carbide in stoichiometric SiC before and after bombardment, while it exists in the form of graphite in carbon rich samples, which suggests that the bound state of carbon in the form of carbide should correspond to the low sputtering yield in stoichiometric SiC coatings. The surface stoichiometry changes due to hydrogen bombardment were observed by AES, where the carbon population increases in stoichiometric SiC, while it decreases in carbon rich samples, which was supported as well by the results from electron probe X-ray microanalysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.