Abstract

The level of Pt loadings in polymer electrolyte fuel cells (PEFC) is still one of the main hindrances for implementation of PEFCs into the market. Therefore, new catalyst and electrode preparation methods such as sputtering are of current interest, because they allow thin film production and have many cost saving advantages for electrode preparation. This paper summarises some of the most important studies done for sputtered PEFCs, including non carbon supported electrodes. Furthermore, it will be shown that an understanding of the main morphological differences between sputtered and ink-based electrodes is crucial for a better understanding of the resulting fuel cell performance. Especially, the electrochemical surface area (ECSA) plays a key role for a further increase in PEFC performance of sputtered electrodes. The higher surface specific activities i(k,spec) of sputtered compared to ink-based electrodes will be discussed as advantage of the thin film formation. The so- called particle size effect, known in literature for several years, will be discussed as reason for the higher i(k,spec) of sputtered electrodes. Therefore, a model system on a rotating disc electrode (RDE) was studied. For sputtered PEFC cathodes Pt loadings were lowered to 100 μg(Pt)/cm(2), yet with severe performance losses compared to ink-based electrodes. Still, for Pt sputtered electrodes on a carbon support structure remarkably high current densities of 0.46 A/cm(2) at 0.6 V could be achieved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.