Abstract
AbstractWhen a homogeneous elastic continuum is modelled by a non‐uniform finite element grid, the differences in the size of adjacent finite elements can cause a spurious wave reflection which does not exist in the continuum. Extending previous studies in which the spurious wave reflection was investigated for the case of two uniform grids with a sudden element size change from one grid to the other, the present study deals with the case when the two uniform grids of different element sizes are separated by a transition zone through which the element size varies gradually, either by a geometric progression or by an arithmetic progression. The solution is carried out in complex variables and numerical plots of the results are given. When the ratio of wavelength to the largest element size is as low as 4 : 1, the spurious wave reflection is very significant, while for the ratios over 10 : 1 it is insignificant. Inserting a transition zone with gradually varying element size between the two uniform parts of the grid somewhat mitigates the phenomenon of spurious reflection, but this is significant only when the ratio of element sizes in the uniform grids is small (less than about 1·5 : 1). Varying the element size throughout the transition zone in an arithmetic progression seems slightly better than in a geometric progression. The spurious wave reflection is less pronounced for higher‐order elements, in particular for linear strain elements as compared to constant strain elements. The spurious reflection is also less severe for consistent mass than for lumped mass.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Numerical Methods in Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.