Abstract
Spurious vectors (also called “outliers”) in particle image velocimetry (PIV) experiments can be classified into two categories according to their space distribution characteristics: scattered and clustered outliers. Most of the currently used validation and correction methods treat these two kinds of outliers together without discrimination. In this paper, we propose a new technique based on a penalized least-squares (PLS) method, which allows automatic classification of flows with different types of outliers. PIV vector fields containing scattered outliers are detected and corrected using higher-order differentials, while lower-order differentials are used for the flows with clustered outliers. The order of differentials is determined adaptively by generalized cross-validation and outlier classification. A simple calculation method of eigenvalues of different orders is also developed to expedite computation speed. The performance of the proposed method is demonstrated with four different velocity fields, and the results show that it works better than conventional methods, especially when the number of outliers is large.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.