Abstract

If higher-order finite elements are used to discretize the wave equation, spurious modes may occur. These modes are classified as unphysical and supposedly make elements of high order useless for accurate computations. This is in conflict with numerical experiments which appear to provide good results. Here Fourier analysis is used to investigate the behaviour of the numerical error for a number of higher-order one-dimensional finite elements. It is shown that the spurious modes have a contribution to the numerical error that behaves in a reasonable manner, and that higher-order elements can be more accurate than lower-order elements. Lumped elements with Gauss–Lobatto nodes appear to be the best choice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.