Abstract
This paper presents phase-locked loop (PLL) reference-spur reduction design techniques exploiting a sub-sampling phase detector (SSPD) (which is also referred to as a sampling phase detector). The VCO is sampled by the reference clock without using a frequency divider and an amplitude controlled charge pump is used which is inherently insensitive to mismatch. The main remaining source of the VCO reference spur is the periodic disturbance of the VCO by the sampling at the reference frequency. The underlying VCO sampling spur mechanisms are analyzed and their effect is minimized by using dummy samplers and isolation buffers. A duty-cycle-controlled reference buffer and delay-locked loop (DLL) tuning are proposed to further reduce the worst case spur level. To demonstrate the effectiveness of the proposed spur reduction techniques, a 2.21 GHz PLL is designed and fabricated in 0.18 μm CMOS technology. While using a high loop-bandwidth-to-reference-frequency ratio of 1/20, the reference spur measured from 20 chips is <; -80 dBc. The PLL consumes 3.8 mW while the in-band phase noise is -121 dBc/Hz at 200 kHz and the output jitter integrated from 10 kHz to 100 MHz is 0.3ps <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">rms</sub> .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.