Abstract

Genome instability can drive aging in many organisms. The ribosomal RNA gene (rDNA) cluster is one of the most unstable regions in the genome and the stability of this region impacts replicative lifespan in budding yeast. To understand the underlying mechanism, we search for yeast mutants with stabler rDNA and longer lifespans than wild-type cells. We show that absence of a transcription elongation factor, Spt4, results in increased rDNA stability, reduced levels of non-coding RNA transcripts from the regulatory E-pro promoter in the rDNA, and extended replicative lifespan in a SIR2-dependent manner. Spt4-dependent lifespan restriction is abolished in the absence of non-coding RNA transcription at the E-pro locus. The amount of Spt4 increases and its function becomes more important as cells age. These findings suggest that Spt4 is a promising aging factor that accelerates cellular senescence through rDNA instability driven by non-coding RNA transcription.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.