Abstract

ABSTRACTThis article presents SPSTS, an automated sequential procedure for computing point and Confidence-Interval (CI) estimators for the steady-state mean of a simulation-generated process subject to user-specified requirements for the CI coverage probability and relative half-length. SPSTS is the first sequential method based on Standardized Time Series (STS) area estimators of the steady-state variance parameter (i.e., the sum of covariances at all lags). Whereas its leading competitors rely on the method of batch means to remove bias due to the initial transient, estimate the variance parameter, and compute the CI, SPSTS relies on the signed areas corresponding to two orthonormal STS area variance estimators for these tasks. In successive stages of SPSTS, standard tests for normality and independence are applied to the signed areas to determine (i) the length of the warm-up period, and (ii) a batch size sufficient to ensure adequate convergence of the associated STS area variance estimators to their limiting chi-squared distributions. SPSTS's performance is compared experimentally with that of recent batch-means methods using selected test problems of varying degrees of difficulty. SPSTS performed comparatively well in terms of its average required sample size as well as the coverage and average half-length of the final CIs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.