Abstract
The CA2 region of the hippocampus has distinctive properties and inputs and may be linked with the pathology of specific psychiatric and neurological disorders. It is, therefore, important to understand CA2 circuitry and its involvement in the circuitry of the hippocampus. Properties of CA2 basket cells have been reported. However, other classes of CA2 interneurones with cell bodies located in stratum pyramidale remained to be described. In this study, the unusual axonal arbors of a novel subclass of dendrite-preferring CA2 interneurones whose somata are located in the pyramidal cell layer was revealed following intracellular recordings and biocytin labeling. One to four apical dendrites emerged from the soma, branched in stratum radiatum (SR) forming a tuft, but rarely penetrated stratum lacunosum-moleculare (SLM). One or two basal dendrites branched close to the soma, the branches extended through stratum oriens (SO) and often reached the alveus. Unlike CA2 bistratified cells, the axons of these cells arborized almost exclusively in SR with few, if any, branches extending to stratum pyramidale (SP), SO, or SLM. These interneurones again, unlike bistratified cells, were immunonegative for parvalbumin and cholecystokinin. Electrophysiologically, they were similar to some CA2 basket and bistratified cells in that they presented a "sag" in response to hyperpolarizing current injections and displayed spike frequency adaptation. They targeted the apical dendrites of neighboring CA2 pyramidal cells and received inputs from them.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.