Abstract

Simultaneous perturbation stochastic approximation (SPSA) algorithm is also often referred as a Kiefer-Wolfowitz algorithm with randomized differences. Algorithms of this type are widely applied in field of intelligent control for optimization purposes, especially in a high-dimensional and noisy setting. In such problems it is often important to track the drifting minimum point, adapting to changing environment. In this paper application of the fixed gain SPSA to the minimum tracking problem for the non-constrained optimization is considered. The upper bound of mean square estimation error is determined in case of once differentiable functional and almost arbitrary noises. Numerical simulation of the estimates stabilization for the multidimensional optimization with non-random noise is provided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.